Thermal Events in Buses Practical Case Studies of

Aaron J. Jones, ITC Experts Nicole Schimpf, ITC Experts Normand Dube, First Group America

SA International

Introduction

- Buses combine high occupancy loads, limited pathways for egress, and involvement of passengers with limited mobility
- Potential for injury, loss of life, and financial loss is significant in event of a fire
- understanding ignition sources preventing future fires Thoroughly investigating bus fires is critical to
- level systems, and engine component failures common categories of bus fires: electrical systems, wheel Case studies will be presented from each of the most

Introduction

- Between 1999-2003, an average of 6 bus fires per day in US
- 2007 Rate of bus fire claims at Lancer Insurance has risen since
- Fatalities due to fire are rare
- Estimated that 95% of incidents have no associated injuries/tatalities
- NFPA estimates between 2999-2003, bus fires resulted in an average of \$24.2 million annual property damage
- Most origin locations are electrical systems, wheel level systems, and engine compartment failures
- Most contributing initiation factors could be addressed through pre-operation inspection and proper maintenance

SAE International

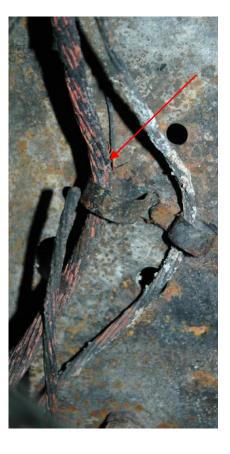
Electrical System Failures

Electrical System Failures

- Estimated to account for ~20% of fires reported between 1995-2008
- Typically due to:
- Current Overload
- High Resistance Connections
- Electrical Arcing
- Commercial vehicles contain more wiring harnesses and therefore have more potential for electrical system tailures

SAE International[®]

- and significant arcing/separation of primary power cables
- No evidence of primary battery cable faulting forward of battery box on buses 2 and 4


Case Study: Arcing Due to Chafing

- Six school buses involved in overnight fire
- Based upon relative damage and burn pattern, origin narrowed to buses 2-4 Bus 2 and 4 had more significant suspension sagging on driver's side

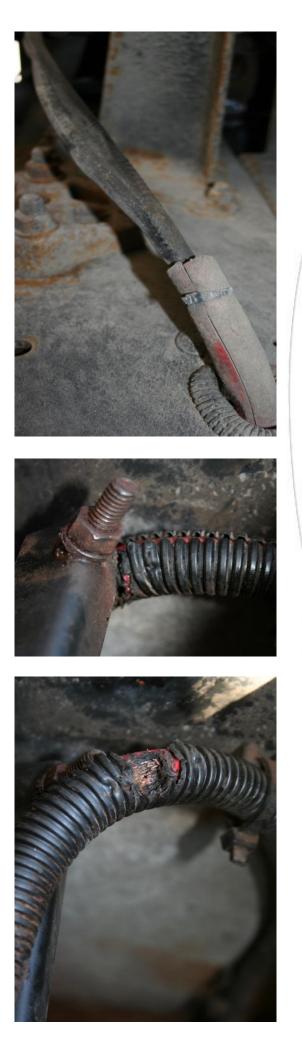
Case Study: Arcing Due to Chafing

- Bus 3:
- Burn damage throughout engine compartment
- Most considerable suspension sagging
- Electrical activity observed where 3 power cables enter engine compartment near front left leaf spring
- Arcing at primary power cable where it passed p-clamp on left hand side rail

Case Study: Arcing Due to Chafing

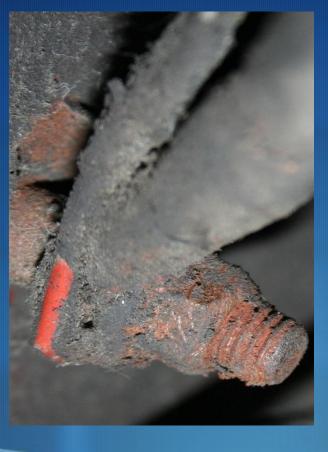
- Determine that fire resulted from electrical arcing of the power cables routed through the P-clamp of bus 3
- Resulted in ignition of plastic/elastomers
- No evidence of electrical arcing near battery box
- As a result, inspections of fleet were performed
- the engine were replaced with plastic blocks and zip-ties P-clamps on battery cable runs from the battery box to
- due to chafing of the battery cables Changes resulted in significant reduction in reported fires

Case Study: Poor Ground Connection



- School bus in operation when driver lost engine power
- Fire observed on left side of engine compartment
- After the fire, the parking brake cable was inoperative
- Stainless steel high pressure power steering hose had signs of significant resistive heating

SAE International



Case Study: Poor Ground Connection

- Parking brake cable melted from body to transmissionmounted parking brake
- B+ battery cable had evidence of fault activity
- chafed through B+ battery cable pinched at hold down bolt and insulation was

Case Study: Poor Ground Connection

- Sufficient ground not achieved between body and primary ground at frame (highly corroded connection at ground stud on frame rail)
- Chafing of B+ battery cable resulted in significant fault current, which flowed through alternative paths to ground
- As a result, new procedures were established for inspecting and maintaining ground cables

Wheel Level Systems

Wheel Level Systems

- Between 1995-2008, 20% of reported bus fires occurred at brakes, 16% at tires, 10% at bearings
- Typically due to:
- Underinflated tires (duals)
- Brake failures
- Wheel bearing failures
- Commercial vehicles are subjected to more frequent operation in more severe conditions and are therefore more susceptible to failure

Case Study: Brake Failure due to Accessory Failure

- Paratransit in service when fire initiated at right rear wheel
- Bus equipped with wheelchair lift
- Bus in operation several hours before smoke
- Two days prior, bus was taken out of service for complaints of rear brakes dragging
- Rear calipers and pads replaced, brake system bled

Case Study: Brake Failure due to Accessory Failure

- Left rear: rotor bluing, friction material degradation
- Right rear: tires partially consumed, more significant bluing of brake components and degradation of friction material
- Front brakes undamaged

Case Study: Brake Failure due to Accessory Failure

- rear brakes when the wheelchair lift door was open Bus was equipped with brake interlock system that applied the
- system Testing ruled out mechanical problem with brake interlock
- Brake interlock system tested on similar buses
- Door could be latched without completely closing
- Door switch remained activated and brakes remained applied
- remain active with brakes applied while bus was in operation Determined that improperly closed door allowed door switch to
- As a result, all wheelchair lift doors and interlock systems were properly adjusted and are now inspected regularly

Engine Compartment Failures

Engine Compartment Failures

- Estimated to account for ~30% of fires reported
- Typically due to:
- Failure of components
- Failure of fluid or electrical routing
- Lubrication or bearing failures
- Commercial vehicles with large engines and more harsh conditions, are more susceptible to failure accessories, and which are used for prolonged service in

Case Study: Compressor Clutch Bearing Failure

- Cut-away paratransit in service for ~6 hours
- Bus parked for 5 minutes, then restarted
- Driver lost ability to turn steering wheel and heard flapping noise under hood
- Driver then heard popping noise under hood
- Smoke observed from engine compartment, emanating from left side

Case Study: Compressor Clutch Bearing Failure

- Circular melt pattern on air cooler charge
- Clutch bearing race fused to compressor
- Compressor body displayed incipient melting
- Clutch bearing completely destroyed due to friction

SAE International

Case Study: Compressor Clutch Bearing Failure

- Air compressor clutch failure resulted in fire
- Bearing failure caused significant heat generation
- material Thermal damage prohibited determination of first ignited
- replacement Prior to fire, bus was serviced for alternator and junction block
- Technician heard noise from air conditioning compressor
- Technician placed out-of-service placard on bus but didn't submit new work order prior to leaving for the day
- Shop manager saw original work had been completed and the failing clutch assembly no new work order was issued, so he released the bus with

SAE International

Rare Circumstance Fire

Case Study: Bus Fire Due to Environment

- Two buses parked outside school in November (week following DST end)
- Seat began smoking and caught fire
- Another seat also smoldering
- Exemplar bus parked in same location, pyrometer indicated material temperature rose to 320F before bus was removed

Case Study: Bus Fire Due to Environment

- School had added new tinting material to windows, which increased reflected intensity
- Sunlight concentrated onto buses, causing increase in temperature
- parked End of DST changed angle of sun at the time buses were
- Seat material confirmed to meet FMVSS 302
- Buses prohibited from parking in area impacted by reflection

Conclusions

- Understanding how bus fires typically ignite can lead to methods of reducing contributing factors
- Most bus fires are avoidable
- Thorough inspection and proper maintenance can address potential issues before fire incidents occur
- A thorough inspection should include ensuring all components and auxiliary systems are adjusted and maintained properly
- Preventative measures will help ensure millions of passengers travel safely to their destinations